Comparison Method Q-Learning and SARSA for Simulation of Drone Controller using Reinforcement Learning

نویسندگان

چکیده

Nowadays, the advancement of drones is also factored in development a world surrounded by technologies. One aspects emphasized here difficulty controlling drone, and system developed still under full control users as well. Reinforcement Learning used to enable operate automatically, thus drone will learn next movement based on interaction between agent environment. Through this study, Q-Learning State-Action-Reward-State-Action (SARSA) are study comparison results involving both performance effectiveness simulation methods can be seen through analysis. A Q-learning systems autonomous application was performed for evaluation study. According process shows that better effective train achieve desire compared with SARSA algorithm controller.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the relationship between using language learning strategies, learners’ optimism, educational status, duration of learning and demotivation

with the growth of more humanistic approaches towards teaching foreign languages, more emphasis has been put on learners’ feelings, emotions and individual differences. one of the issues in teaching and learning english as a foreign language is demotivation. the purpose of this study was to investigate the relationship between the components of language learning strategies, optimism, duration o...

15 صفحه اول

Large Scale Reinforcement Learning using Q-SARSA(λ) and Cascading Neural Networks M.Sc. Thesis

This thesis explores how the novel model-free reinforcement learning algorithm Q-SARSA(λ) can be combined with the constructive neural network training algorithm Cascade 2, and how this combination can scale to the large problem of backgammon. In order for reinforcement learning to scale to larger problem sizes, it needs to be combined with a function approximator such as an artificial neural n...

متن کامل

Large Scale Reinforcement Learning using Q-SARSA() and Cascading Neural Networks

This thesis explores how the novel model-free reinforcement learning algorithm Q-SARSA(λ) can be combined with the constructive neural network training algorithm Cascade 2, and how this combination can scale to the large problem of backgammon. In order for reinforcement learning to scale to larger problem sizes, it needs to be combined with a function approximator such as an artificial neural n...

متن کامل

on the comparison of keyword and semantic-context methods of learning new vocabulary meaning

the rationale behind the present study is that particular learning strategies produce more effective results when applied together. the present study tried to investigate the efficiency of the semantic-context strategy alone with a technique called, keyword method. to clarify the point, the current study seeked to find answer to the following question: are the keyword and semantic-context metho...

15 صفحه اول

An Adaptive Learning Game for Autistic Children using Reinforcement Learning and Fuzzy Logic

This paper, presents an adapted serious game for rating social ability in children with autism spectrum disorder (ASD). The required measurements are obtained by challenges of the proposed serious game. The proposed serious game uses reinforcement learning concepts for being adaptive. It is based on fuzzy logic to evaluate the social ability level of the children with ASD. The game adapts itsel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Advanced Research in Applied Sciences and Engineering Technology

سال: 2023

ISSN: ['2462-1943']

DOI: https://doi.org/10.37934/araset.30.3.6978